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This paper addresses the problem of state estimation for nonlinear systems by means of the unscented
Kalman filter �UKF�. Compared to the traditional extended Kalman filter, the UKF does not require the local
linearization of the system equations used in the propagation stage. Important results using the UKF have been
reported recently but in every case the system equations used by the filter were considered known. Not only
that, such models are usually considered to be differential equations, which requires that numerical integration
be performed during the propagation phase of the filter. In this paper the dynamical equations of the system are
taken to be difference equations—thus avoiding numerical integration—and are built from data without prior
knowledge. The identified models are subsequently implemented in the filter in order to accomplish state
estimation. The paper discusses the impact of not knowing the exact equations and using data-driven models in
the context of state and joint state-and-parameter estimation. The procedure is illustrated by means of examples
that use simulated and measured data.
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I. INTRODUCTION

The problem of parameter estimation using the method of
least squares has been known since the days of Gauss. Given
a set of equations that suposedly described the movement of
the planets, it was desired to find parameter values such that
the set of equations and parameters fitted the available data
in the best way possible, according to some criterion �1�. If
some assumptions are made, the least-squares estimator pro-
vides a solution to the problem above.

The state estimation problem is somewhat the opposite.
Instead of estimating the parameters from a set of indepen-
dent variables, state estimation will provide the independent
variables �states� given the parameters and a measured sig-
nal. A solution to this problem, in the linear case, is provided
by the Kalman filter �KF� �2�.

In the case of nonlinear systems, the Kalman filter is in-
adequate. A way to overcome such a shortcoming is to lin-
earize the system equations at each iteration and simply run
the standard KF. This procedure is known as the extended
KF �EKF�. Intuitive as it may be, this procedure is prone to
a number of numerical difficulties and it is known to fail for
strongly nonlinear systems, that is, systems that will not be
well approximated by a linear one.

The challenges of estimating states and eventually some
parameters of nonlinear systems has received great attention
recently �3�. In particular, alternatives to the EKF have been
sought, such as the unscented KF �UKF� proposed in the
mid-1990s �see �4� and references therein� and which has
already attracted attention in the context of nonlinear dynam-
ics �5,6�. As shown in the cited references, the UKF is a very
promising and powerful tool and seems superior to the EKF
in various respects.

Given that the UKF has great potential for real applica-
tions, this paper will address the UKF in a context that is
somewhat more realistic than previously studied. In the

former works, the dynamical equations—that governed the
systems for which the states and eventually parameters were
to be estimated—were assumed known. In order to handle
such differential equations in the context of the filter, numeri-
cal integration was necessary. In this paper the models are
not assumed known. Rather, the starting point is a set of
noisy data from which a set of difference equations are built
and which are used to implement the UKF. As a by-product,
because the models are discrete time, no integration is re-
quired. In real-time applications this feature is most wel-
come. In the literature, one simulated �no noise added� ex-
ample was found that used a feedforward neural network and
it refers to the Mackey-Glass chaotic time series �8�.

In this paper the model-bulding and filtering stages are
illustrated using two examples: the simulated Lorenz system
and an electronic oscillator from which data were actually
recorded.

This paper is organized as follows. The problem of state
estimation using the KF, EKF, and UKF is briefly reviewed
in Sec. II. Model building from data is reviewed in Sec. III.
Section IV reports the results obtained using the Lorenz sys-
tem and an electronic oscillator. Finally, Sec. V discusses the
main points of the paper.

II. STATE ESTIMATION

The state estimation problem for the system

x�k� = Ax�k − 1� + Bu�k − 1� + w�k − 1� ,

y�k� = Cx�k� + r�k� ,

where A�Rn�n, B�Rn�p, and C�Rm�n are constant matri-
ces, can be described as follows. Suppose that the only
known data are the initial conditions x�0��Rn, the measure-
ments y�k��Rm, and the control inputs u�k��Rp. Process
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noise w�k��Rn and measurement noise r�k��Rm are as-
sumed white, Gaussian, and mutually independent with co-
variance matrices Q and R, respectively1. If there are no
exogenous signals, then simply u�k�=0 ∀ k. It is desired to
obtain an estimate for the state vector x�k�, k=1, 2,….

The standard solution to this problem is the classical Kal-
man filter �2�

x̂�k�k − 1� = Ax̂�k − 1�k − 1� + Bu�k − 1� ,

ŷ�k�k − 1� = Cx̂�k�k − 1� ,

P�k�k − 1� = AP�k − 1�k − 1�AT + Q�k� ,

Pyy�k�k − 1� = CP�k�k − 1�CT + R�k� ,

Pxy�k�k − 1� = P�k�k − 1�CT,

K�k� = Pxy�k�k − 1�Pyy
−1�k�k − 1� , �1�

x̂�k�k� = x̂�k�k − 1� + K�k��y�k� − Cx̂�k�k − 1�� ,

P�k�k� = P�k�k − 1� − K�k�Pyy�k�k − 1�KT�k� , �2�

where K is the Kalman gain matrix, the carets indicate the
mean �conditional expectations� of the corresponding density
function, and P is the covariance matrix of the vector of
estimation errors. Moreover, the notation z�k �k−1� indicates
the value of the quantity z at time k computed based on
information available up to time k−1. Likewise, z�k �k� indi-
cates the value of z computed at time k using information
available up to and including time k.

The first equation in �1� shows how the state at time
k−1 is propagated to time k and the second equation shows
how the propagated state maps onto the output. Similarly, the
third equation shows how the estimation error vector covari-
ance matrix propagates from time k−1 to time k. A key re-
mark here is to notice that such propagations are made using
the linear dynamical model available for the system repre-
sented by matrices �A ,B ,C�.

On the other hand, the two equations in �2� show how the
current values, that is, at time k, of the state vector and its
covariance matrix can be updated after new information—
contained in the measured value y�k�—becomes available.

A. The nonlinear case

If the system is nonlinear and described by

x�k� = f„x�k − 1�,u�k − 1�,w�k − 1�… ,

y�k� = h„x�k�,r�k�… , �3�

the best would be to propagate the entire probability density
function and then take expectations. This is impractical, but

the state vector of the system can be comfortably propagated
using the model �3�. Having proceeded thus, it is straightfor-
ward to use the first equation in �2� to update the state vector
when the new measurement becomes available.

Unfortunately, the equations that describe the propagation
of P, Pxy, and Pyy, together with the linear state propagation
equations, as stated in Eq. �1�, are valid only for linear sys-
tems. It is interesting to notice that the other equations re-
main valid even in the nonlinear case. The traditional ap-
proach to propagate the covariance matrices in the nonlinear
case has been to linearize the model �3� at each step and then
apply the Kalman filter equations. This results in the well-
known extended Kalman filter

x̂�k�k − 1� = f„x̂�k − 1�k − 1�,u�k − 1�… ,

ŷ�k�k − 1� = h„x̂�k�k − 1�… ,

P�k�k − 1� =
� f

�xi
P�k − 1�k − 1�� � f

�xi
�T

+ Q�k� ,

Pyy�k�k − 1� =
�h

�xi
P�k�k − 1�� �h

�xi
�T

+ R�k� ,

Pxy�k�k − 1� = P�k�k − 1�� �h

�xi
�T

,

K�k� = Pxy�k�k − 1�Pyy
−1�k�k − 1� , �4�

x̂�k�k� = x̂�k�k − 1� + K�k��y�k� − h„x̂�k�k − 1�…� ,

P�k�k� = P�k�k − 1� − K�k�Pyy�k�k − 1�KT�k� . �5�

It is vital to realize that in the EKF the nonlinear model
can and should be used to propagate the state and output
vectors �first two equations in �4�� and to update the state
vector. However, the remaining equations of the filter must
be computed using linearizations that, depending on the ap-
plication, are prone to a number of numerical problems.

B. The unscented Kalman filter

To see the key contribution of the UKF, consider the vec-
tors of random variables x and y that are related by a non-
linear function as y= f�x�. If a sufficiently large number of
realizations of x and y are available, then the sample means
x̄ and ȳ and covariances P, Pyy, and Pxy can be readily com-
puted regardless of the function f .

Based on this remark, a solution to the problem in the
case of nonlinear systems would be to actually propagate a
large set of state vectors and subsequently to numerically
compute means and covariances.2

The problem with this approach, however, is the great
number of such vectors that would be required in order to

1It is important to emphasize that Q and R play the roles of lower
bounds for P �and consequently for Pxy� and Pyy, respectively.

2In this case x would be state vectors prior to propagation, and y
would be the corresponding images after propagation using the sys-
tem dynamical model f .
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have a reliable estimate of means and covariances. More-
over, because the �approximately� propagated probability
density function will most likely not be Gaussian, other mo-
ments besides the mean and covariance would be necessary
to fully specify it.

Such difficulties have been partially circumvented by the
use of the unscented transformation �UT� �4�. The UT re-
duces the potentially large number of state vectors to a small
representative group, which have been named sigma points.
The main idea is to determine a small number of sigma
points �actually vectors�—Xi, i=0,1 ,… ,2na, where na is the
dimension of the augmented state vector—that by construc-
tion has the same mean and covariance as x, that is,

mean�Xi	 = x̄ and cov�Xi	 = P ,

and then to propagate the sigma points using the model
Yi= f�Xi�. Subsequently, the mean and covariance of the new
set of points Yi should be numerically determined. The val-
ues thus computed become working estimates for the mean
and covariance of the random vector y, respectively, that is,

mean�Yi	 
 ȳ and cov�Yi	 
 Pyy .

Recall that, in the case of the UKF, na=2n+m is the di-
mension of the augmented state vector which is composed by
the concatenation of the original state, process, and measure-
ment noise variables; thus

xa�k� = �xT�k�wT�k�rT�k��T

and xa�k��R2n+m.3 Consequently, the covariance matrix of
the vector of estimation errors must refer to this augmented
state vector and henceforth it will be referred to as Pa

�R�2n+m���2n+m�, that is,

Pa = �P 0 0

0 Q 0

0 0 R
� .

The sigma points can be chosen as

X0
a�k − 1�k − 1� = x̂a�k − 1�k − 1� ,

Xi
a�k − 1�k − 1� = x̂a�k − 1�k − 1� + �
�na + ��Pa�k − 1�k − 1��i,

Xi+na

a �k − 1�k − 1� = x̂a�k − 1�k − 1�

− �
�na + ��Pa�k − 1�k − 1��i, �6�

with associated weights given by

w0
�m� =

�

na + �
,

w0
�c� =

�

na + �
+ 1 − �2 + � ,

wi
�m� = wi

�c� =
1

2�na + ��
, �7�

where i=1,… ,na and �
�·��i is either the ith row or column
of the matrix square root.4 For the sake of simplicity the
following choices are made: �=�2��+na�−na=0 �4,5� �=1,
�=0, and �=2 �8�. Choosing the sigma points as indicated in
�6� guarantees exact matching of the first two moments
�mean and covariance� and, because the state distribution
was assumed symmetrical, the third moment is also exactly
matched, since it is zero. Other schemes to choose sigma
points and the respective implications for the filter have been
discussed in �4�. Therefore, the unscented Kalman filter
equations can be expressed as �4,8�

x̂�k�k − 1� = �
i=0

2na

wi
�m�Xi

x�k�k − 1� where Xi
x�k�k − 1�

= f„Xi
x�k − 1�k − 1�,u�k − 1�,Xi

w�k − 1�k − 1�… ,

ŷ�k�k − 1� = �
i=0

2na

wi
�m�Yi�k�k − 1� where Yi�k�k − 1�

= h„Xi
x�k�k − 1�,Xi

r�k − 1�k − 1�… ,

P�k�k − 1� = �
i=0

2na

wi
�c��Xi

x�k�k − 1� − x̂i�k�k − 1���Xi
x�k�k − 1�

− x̂i�k�k − 1��T,

Pyy�k�k − 1� = �
i=0

2na

wi
�c��Yi�k�k − 1� − ŷi�k�k − 1���Yi�k�k − 1�

− ŷi�k�k − 1��T,

Pxy�k�k − 1� = �
i=0

2na

wi
�c��Xi

x�k�k − 1� − x̂i�k�k − 1���Yi�k�k − 1�

− ŷi�k�k − 1��T,

K�k� = Pxy�k�k − 1�Pyy
−1�k�k − 1� , �8�

with i=0,… ,2na and where Xi
a�k−1 �k−1� are given by �6�

and Xa= ��Xx�T �Xw�T �Xr�T�T. The updating equations are

x̂�k�k� = x̂�k�k − 1� + K�k��y�k� − h„x̂�k�k − 1�…� ,

P�k�k� = P�k�k − 1� − K�k�Pyy�k�k − 1�KT�k� . �9�

In closing this section, it is important to notice that the
updating equations of the three filter algorithms are the same,3In the particular case of purely additive process and measurement

noise, both the state vector and the estimation error covariance ma-
trix need not be augmented since an alternative form of the algo-
rithm can be used which reduces computational costs and increases
numerical robustness �8�.

4If B=ATA, then the rows of A should be used. Conversely, if
B=AAT, the columns of A should be used to compose the sigma
points �4�.
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that is, Eqs. �2�, �5�, and �9�. On the other hand, the state
vector propagation is carried out using the linear model for
the KF, using the Jacobian—that is, it is locally approximate
only—for the EKF and using the full nonlinear model in the
case of the UKF.5 For details on Kalman filtering in general,
the reader is referred to �7� and for the UKF see �4,8� and
references therein. Recently, the UKF has been analyzed in
the light of Bayesian theory �6� and it has been classified as
a �-point Kalman filter algorithm �9�. The latter expression
refers to a group of nonlinear filters that make implicit the
use of a deterministic sampling approach and a statistical
linearization technique called weighted statistical linear re-
gression so as to obtain the optimal terms used in �9�.

C. Simultaneous state and parameter estimation

An important characteristic of the EKF and UKF algo-
rithms is that they can be readily used to jointly estimate the
system states and parameters. Once the algorithms are able to
deal with nonlinear dynamical evolution, it is easy to con-
sider a parameter as a “virtual” state that has to be estimated.
Often it is expected that the system parameters do not vary
or, if they do, the variation is much slower than that of the
system state. This can be mathematically represented by re-
writing Eq. �3� as

x�k� = f„x�k − 1�,��k − 1�,u�k − 1�,w�k − 1�… ,

��k� = ��k − 1� + v�k − 1� ,

y�k� = h„x�k�,��k�,r�k�… , �10�

where ��k��Rn� is the vector of parameters to be estimated
with covariance matrix P��Rn��n� and v�k��Rn� corre-
sponds to a Gaussian, zero-mean, white noise term, with co-
variance matrix Q��Rn��n�, that accounts for the uncer-
tainty in the estimated parameters.6 Indeed, Eqs. �10�
describe an extended system, whose extended state vector is
xext�k�= �x�k�T ��k�T�T, xext�k��Rn+n�.

In the UKF algorithm, in order to take into account the
effect of process and measurement noise, together with un-
certainty in the parameter estimates, by considering them as
unknown perturbations to the nominal dynamical equations
�5,8�, the augmented extended state vector for the extended
system �10� is

xext
a �k� = �x�k�T ��k�T w�k�T v�k�T r�k�T�T,

and xext
a �k��Rna where na=2n+2n�+m.

It is important to note that, for jointly estimating states
and parameters using Eqs. �10�, the matrix Pa in Eq. �6� must

be changed to Pext
a ; and the matrix P in Eqs. �8� and �9� must

be changed to Pext. These extended covariance matrices are
defined as

Pext
a = �

P 0 0 0 0

0 P� 0 0 0

0 0 Q 0 0

0 0 0 Q� 0

0 0 0 0 R
�, Pext = �P 0

0 P�
� ,

where P�Rn�n is the covariance matrix of the vector of
state estimation errors, already defined in �1�. This distinc-
tion is necessary so that the noise means and covariance
matrices will not change during the iterations of the UKF
algorithm, and only Pext will evolve dynamically. This be-
havior is consistent with the assumption that the noise sig-
nals are independent from x�k�, ��k�, and y�k�.

III. NONLINEAR MODEL BUILDING FROM DATA

A. The nonlinear representation

In this paper, the system will be modeled using a multi-
variable nonlinear autoregressive moving average �NARMA�
model of the form �10�

y�k� = f��y�k − 1�,e�k�,…,e�k − ne�� , �11�

where

y�k� = �
y1�k�
y2�k�
]

ym�k�
�, e�k� = �

e1�k�
e2�k�
]

em�k�
� .

In Eq. �11� ne is the maximum lag considered for the noise
terms, and y�k� is a vector of m measurements taken at time
t=kTs obtained by sampling the continuous data y�t� with
sampling time Ts. e�k� accounts for uncertainties, possible
noise, unmodeled dynamics, and so on. For each signal, f��·�
is some nonlinear function of y�k� and e�k�. In this paper,
f��·� is taken to be polynomial with maximum degree �, but,
of course, many other representations are available in the
literature.

It is pointed out that the standard least-squares estimator
cannot handle noise in the independent variables without in-
curring bias. The use of noise terms in addition to the ex-
tended least-squares estimator is effective in handling such a
situation and avoiding bias. This problem has been recently
reviewed in �3�.

Equation �11� represents an autonomous multivariable
system with m outputs and no inputs. In both examples to be
discussed in the present work m=3, but the extension for
m�3 is rather obvious. Therefore, the models take the fol-
lowing general form;

y1�k� = f̂1
�
„y1�k − 1�,y2�k − 1�,y3�k − 1�,	1�k − 1�,	1�k

− 2�,…,	1�k − n	1
�… + 	1�k� ,

5In fact, not the state vector but the sigma points are propagated in
the case of the UKF.

6An estimate of Q� can be obtained as a by-product of the model-
building process, as described in Sec. III. Different approaches,
namely, fixed or time-varying Q�, can be used to tune the EKF or
UKF convergence rate and parameters tracking performance �8�.
For the sake of simplicity, in the present work Q� will be taken as a
constant matrix.
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y2�k� = f̂2
�
„y1�k − 1�,y2�k − 1�,y3�k − 1�,	2�k − 1�,	2�k

− 2�,…,	2�k − n	2
�… + 	2�k� ,

y3�k� = f̂3
�
„y1�k − 1�,y2�k − 1�,y3�k − 1�,	3�k − 1�,	3�k

− 2�,…,	3�k − n	3
�… + 	3�k� , �12�

where 	i�k�, i=1, 2, 3, are the residuals, also known as the
one-step-ahead prediction errors.

The model �12� clearly has three outputs. However, it is
interesting to notice that for a given equation, the other out-
puts appear as exogenous inputs. For this reason, the model-
ing procedure can be dealt with as three multi-input single-
output �MISO� problems that together must compose an
autonomous model of the underlying dynamics. Conse-
quently, in what follows the formula relates to the MISO
case.

B. Parameter estimation

Having defined which representation to use, the identifi-
cation of a model consists roughly of two steps, namely,
structure selection and parameter estimation.

Any equation of �12� can be expanded into polynomials
and, if taken along the available data, can be expressed in

matrix form as y=
�̂+�, where 
�RN�n� contains both
independent variables, one-step-lagged dependent variable,

and residuals; �̂�Rn�, the caret indicates estimated values,
y= �y�k�	k=1

N , and �= �	�k�	k=1
N is the vector of residuals.

Having decided which regressors to use, the
n�-dimensional parameter vector � can be estimated by mini-

mizing the quadratic cost function JELS��̂�=�T� using or-
thogonal extended least squares �11�, which effectively over-
comes two major difficulties, namely, �i� numerical ill
conditioning and �ii� structure selection. This amounts to se-
lecting the columns of the regressor matrix 
. A criterion for
structure selection that has proved helpful in many situations
involving both real and simulated data is the error reduction
ratio �ERR� �10�. This criterion is a welcome by-product of
the procedure outlined above. Complementary procedures
have also been proposed in the literature �12,13�.

C. Structure selection

The regressors of model �12� may contain any combina-
tion of lagged outputs. In the present case, the number of
such combinations is determined by the values of � and n	i

.
Some kind of mechanism is called for in order to automati-
cally choose the best n� regressors to compose the model.
This problem is often referred to as model structure selection
and must be judiciously accomplished regardless of the
mathematical representation being used.

An important remark concerning structure selection is in
order. In certain mathematical representations for which the
base functions are of the same kind—for instance, radial ba-
sis function �RBF� models—or in the case of networks for
which the activation functions could be the same, the prob-
lem of structure selection is basically one of deciding on the

size of the model, that is, the “optimal” number of base func-
tions or nodes in the hidden layer. This problem is somewhat
easier to solve and has been addressed in different ways,
such as the use of the description length for both RBF �14�
and neural network models �15�; error reduction ratio, regu-
larization combined with the predicted residual sum of
squares statistic for RBF models �16�, and multiobjective
optimization for neural networks �17�. All such criteria are
based on either statistics or information criteria but are not
directly connected to the resulting dynamics. Recently, some
guidelines have been suggested to use dynamical information
�symmetry� in order to assist the model-building process for
RBF and neural network models �18�.

In the case of other model representations, as the one used
in this paper, for which the basis functions are different, then
it does not suffice to decide on the size of the model, but
also, and primarily, it is necessary to decide which type of
basis functions are required. When this is the case, it has
been shown that a wrong type of basis functions �called term
cluster� can have a very strong effect on the dynamics of the
model, without necessarily affecting the statistics �12,19,20�.
All the aforementioned representations have been compared
on a set of real data in a recent paper �21�.

D. Models for UKF implementation

It should be noticed that the dynamical model needed to
implement the UKF will be used to perform two tasks, as
seen in Eqs. �8� and �9�. First, the model is used to predict
the entire state vector from the single measured variable that
drives the filter plus the other components of the state vector
that must be totally estimated by the filter, as illustrated in
Fig. 1.7 In the second place, the model is used to propagate
the sigma points as an approximate way to estimate how
mean and covariance are affected by the system.

Having realized the different roles of the model within the
filter, a number of remarks are in order.

From a dynamical point of view, the model should pro-
vide good predictions of the full state vector at time k, that is,
x̂�k�, given the scalar signal that drives the filter xi�k� at time
k and the estimates of the state variables provided by the
filter at time k−1, that is, x̂j�k−1�, j=1,… ,n. Because the
model does not need to produce free-run predictions, the

7In the examples investigated in this paper only one variable was
used to drive the filter. This role can also be performed by any
generic nonlinear function�s� of the state variable�s�.

FIG. 1. Schematic representation of the aim of the UKF. A
model is needed to provide f and h in Eqs. �8� and �9�. Apart from
the full state vector, it is possible to estimate parameters also, in
which case Eq. �10� is required.
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requirements on its dynamics are less exacting as, for in-
stance, when free runs are used to reconstruct attractor prop-
erties. Therefore, it is unnecessary to require that the model
dynamics be topologically equivalent to the original dynam-
ics. Moreover the dynamical inaccuracy of the model is
somewhat compensated by the dynamical information pro-
vided by the measured variable that drives the filter.

From a static point of view, the model is used to propa-
gate the sigma points. In this respect the dynamical features
are not important but the nonlinearity of the model should be
adequate. A poor approximation of the nonlinearity would
have the effect of mapping the sigma points incorrectly and
this could eventually alter significantly the covariance matrix
and, in turn, the filter stability. Therefore if the system cannot
be correctly approximated by a given model representation, a
different one should be tried.

IV. NUMERICAL EXAMPLES

A. The Lorenz system

This example will consider the well-known Lorenz sys-
tem �22� which has also been studied in the context of state
and joint parameter estimation in �5�

ẋ = − �1x + �1y ,

ẏ = �2x − y − xz ,

ż = − �3z + xy , �13�

with �1=12, �2=40, and �3=4. The set of equations �13�
was integrated with �t=0.01 using a fourth-order Runge-
Kutta algorithm with initial condition x�0�=y�0�=z�0�=0.1.
After integration, three independent and Gaussian distributed
realizations of white noise were added to each state variable.
The noise distributions were zero mean and had a standard
deviation equal to 10% of the respective state variable. The
resulting data are shown in Fig. 2�b�. These data are the
starting point of this example.

1. Global modeling

One thousand observations of each state variable �ob-
tained by decimating the integrated data by a factor 2, to
yield data sampled at Ts=20 ms� were used in the model-
building stage. These data are shown in Fig. 2�b�. The fol-
lowing model was obtained as indicated in Sec. III:

x�k� = + 0.861 921 218 252x�k − 1� + 0.234 404 677 244y�k

− 1� − 0.752 478 985 861 � 10−3y�k − 1�z�k − 1�

− 0.183 251 890 379 � 10−2x�k − 1�z�k − 1� ,

y�k� = 1.159 618 833 82y�k − 1� − 0.572 159 400 169

� 10−2y�k − 1�z�k − 1� − 0.142 963 657 294

� 10−1x�k − 1�z�k − 1� + 0.577 685 873 218x�k − 1� ,

z�k� = + 0.962 354 730 753z�k − 1� + 0.553 656 929 609

� 10−2y2�k − 1� + 0.940 412 257 934 � 10−2x�k

− 1�y�k − 1� − 0.116 546 062 702 � 10−2z2�k − 1�

+ 0.399 604 189 148 � 10−2x2�k − 1� , �14�

where only the deterministic part of the model is shown. The
stochastic part, used during parameter estimation, in order to
avoid bias is not shown nor used in the filter. The attractor to
which Eq. �14� settles under free-run simulation is shown in
Fig. 3�a�.

2. State estimation

In the following, model �14� was used as part of the UKF
�see Eqs. �8� and �9�� to estimate the three components of the
Lorenz attractor. It should be noticed that in this example the
state vector is composed thus x= �x�k� y�k� z�k��T. Model
�14� was used as an approximation to the function f . Because
only the state x�k� was chosen to drive the filter, function h
was defined as the vector C= �1 0 0�.

The estimation result is shown in Fig. 3�b�. An important
point to notice is that only the noisy sampled sequence x�k�
was presented to the UKF to reconstruct the three compo-
nents shown in Fig. 3�b�. Therefore the three components are
only needed during the model-building phase. From then on,

FIG. 2. Lorenz attractor obtained by numerical integration of
Eq. �13� with �1=12, �2=40, and �3=4 and initial conditions
x�0�=y�0�=z�0�=0.1. �a� Noise-free and �b� with 10% Gaussian
white noise added to each component.
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only one component is used to drive the filter, and conse-
quently to estimate the full state vector.

Figure 4 shows the true state obtained by integration of
the Lorenz equations �13�, y�t�, t=kTs, and the states ŷODE�k�
and ŷNAR�k� estimated by UKF using the theoretical �13� and
identified �14� models, respectively.

Table I summarizes the UKF performance for various
noise levels and for both additive and multiplicative noise. In
the case of additive noise model �14� was used to propagate
the sigma points. A counterpart model �not shown� was ob-
tained from data with multiplicative noise. The table also
includes the rms estimation error when the theoretical model
�13� was used in the filter. It is vital to realize that the same
identified model �see Eq. �14�� was used in all examples of
additive noise and that the model obtained from data with
multiplicative noise was always used in the examples that
considered that type of noise. As stated before, such models
were obtained from data sets composed of the three state
components with 10% noise �additive and multiplicative�.
The higher noise levels indicated in the table correspond to

noise added to the x component used to drive the filter, in the
case of additive noise, or to noise included in the first differ-
ential equation in �13�, in the case of multiplicative noise.

In view of Table I, it would be tempting to say that the
UKF with the identified model is quite competitive espe-
cially at high noise levels. However, it should be noticed that
in practice the theoretical ordinary differential equation
�ODE� model will not be available in general and some type
of identified model is required.

It is important to remark that, whenever the identified
model �14� was used, or its counterpart in the case of multi-
plicative noise, the process noise covariance matrix was
taken such that Q�0. Otherwise, the small model imperfec-
tions added to the high sensitivity to initial conditions of
chaotic systems led to bad tracking performance after the
convergence of the filter. Hence Q was taken to be a diagonal
matrix with elements equal to the variance of the one-step-

FIG. 3. Lorenz attractor obtained �a� by free-run simulation of
Eq. �14� with initial conditions x�0�=y�0�=z�0�=0.1 �model �14�
was obtained from the data shown in Fig. 2�b�� and �b� by the UKF
with Eq. �14� from the single variable x�k�. The transient at the
beginning was included in the plot to give an idea of how quickly
the filter settles.

FIG. 4. �a� Window of data corresponding to the y component of
the Lorenz attractor and �b� estimation error. In the plot �·� is the
true �obtained by integration of the differential equations� value
y�t�, t=kTs, �—� and �- -� indicate, respectively, the state estimated
by the UKF from the single variable x�k� with Eq. �14�, ŷNAR�k�
�eNAR�k� for plot �b��, and with Eq. �13�, ŷODE�k� �eODE�k� for
plot �b��.
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ahead prediction errors obtained by simulation of model
�14�. In a sense, matrix Q thus obtained quantifies model
uncertainties.

Finally, it is interesting to notice that in Table I the esti-
mation error of the z variable is significantly less than for x
and y. Also, the errors related to such variables are rather
similar being the error of x slightly smaller than the error
related to y. This is in good agreement with the estimates of
the �normalized� observability indices �z=1.00, �y =0.37 and
�x=0.30 �27�. In fact, such indices indicate that y is slightly
more observable than x, but clearly show that z is signifi-
cantly more observable than the other two. An important
remark is that it is well known that such indices have a local
character, rather than global. This is consistent with the fact
that the performace of the filter depends quite strongly on the
“local” performance of the model.

B. An electronic oscillator

This example considers an actual implementation of an
electronic oscillator known as Chua’s circuit �23�. In the
gyrator-based implementation used, the frequency of the
main peak in the spectral power density is around 1.6 Hz
�24�. This enabled collecting the data with a sampling time
of Ts=30 ms.

1. Global modeling

As for the case of the Lorenz system, only 1000 observa-
tions of each state variable were used to build the model,
according to the procedure briefly reviewed in Sec. III. The
data used to build the model are shown in Fig. 5. The auto-
matic structure selection scheme followed by an orthogonal
extended least-squares estimation routine yielded the follow-
ing model:

x�k� = 1.210 362 032 06x�k − 1� + 0.972 0471 837 33

� 10+2z�k − 1� + 0.598 221 283 675y�k − 1�

− 0.171 315 924 858 � 10−1x3�k − 1�

+ 0.398 0977 036 75 � 10+5y�k − 1�z2�k − 1�

+ 0.819 593 354 856 � 10+4x�k − 1�z2�k − 1�

− 0.111 072 563 509 � 10+3y2�k − 1�z�k − 1� ,

y�k� = 0.895 252 009 866y�k − 1� − 0.223 303 6811 19

� 10+6z3�k − 1� + 0.083 714 349 294 7x�k − 1�

+ 0.129 325 180 333 � 10+3z�k − 1�

− 0.677 214 817 432 � 10−3x3�k − 1�

+ 0.181 085 268 783 � 10−3x2�k − 1�

− 0.204 050 446 812 � 10+1x�k − 1�y�k − 1�z�k − 1� ,

z�k� = 0.938 265 0571 86z�k − 1� − 0.637 485 684 220

� 10−3y�k − 1� − 0.362 134 020 185 � 10−4x�k − 1�

+ 0.315 363 093 575 � 10−5x2�k − 1�

+ 0.632 868 345 441 � 10−5y2�k − 1�

− 0.643 318 682 312 � 10−5x�k − 1�y�k − 1�

+ 0.187 619 321 537 � 10−2x�k − 1�z�k − 1� . �15�

As before, only the deterministic part of the model is shown.
It is important to notice that model �15� cannot produce a
mathematically symmetrical attractor because it includes
even parity terms �25�. When symmetry conditions were im-
posed during modeling, the new model did not settle into the
double-scroll attractor and, for the reasons discussed in Sec.
III D, state estimation results did not improve.

Besides the polynomial model �15� multilayer perceptron
�MLP� neural networks were trained from the same set of
data. Three networks were trained, one for each state vari-
able. The input layer in each case was the same, namely,
�x�k−1� ,y�k−1� ,z�k−1��T. The activation functions of the
nodes in the single hidden layer were hyperbolic tangent and
the single output node was linear in all three networks. In
this paper we discuss the results obtained by two set of net-

TABLE I. Normalized root mean square �rms� error of estimated
states for the Lorenz system corrupted with different amounts of
white Gaussian noise. Figures in romantype relate to additive noise
whereas figures in italics relate to multiplicative noise. In every
case the UKF was used. In the table, ODE indicates that the original
model �13� was used to propagate the sigma points and NAR indi-
cates that the identified model �14� was used instead. In every case,
only the noise contaminated x component was used to drive the
filter.

Noise �%� x�%� y�%� z�%�

ODE 10 10 1.25 0.11 1.57 0.95 0.88 0.70

NAR 10 10 3.31 0.26 4.23 1.94 2.52 1.84

ODE 25 25 3.53 0.28 4.41 2.40 2.41 1.91

NAR 25 25 6.06 1.08 7.55 3.38 3.92 2.77

ODE 50 50 8.40 1.16 10.90 4.59 5.79 3.73

NAR 50 50 9.91 2.95 12.36 5.93 6.28 4.29

FIG. 5. The measured double scroll attractor of the implemented
electronic oscillator. These are the data used to build model �15�.
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works. The first set was composed of three fully connected
networks with two nodes in the hidden layer and the second
was composed of three fully connected networks with seven
nodes in the hidden layer. Such neural models will be re-
ferred to as MLPs2 and MLPs7, respectively. Briefly, MLPs2
also settled to a limit cycle and MLPs7 showed a very long
chaotic transient—consistent with the double-scroll
attractor—before settling to a spiral strange attractor.

For the reasons discussed in Sec. III D, it was believed
that all the estimated models—�15�, MLPs2, and MLPs7—
could be competitive in the implementation of the UKF.
However, it was desired to verify if models with improved
global dynamics would outperform locally optimal models.
In order to investigate this issue slight changes were imple-
mented in model �15� a posteriori, as described in the fol-
lowing paragraph.

The free run of model �15� settles to the attractor shown
in Fig. 6�a�. Such an attractor seems to be close to a genuine
solution of the system in the sense that it could be the “stable
version” of one of the unstable periodic orbits that compose
the original attractor. When this is the case, it has been ar-
gued that the model can be perturbed �this can be done in

different ways� in order to become chaotic �26�. In the
present case this is achieved by slightly increasing the under-
lined parameter. For instance, if 0.924 274 41 is used, model
�15� settles to the double-scroll attractor shown in Fig. 6�b�.8

In what follows we shall refer to this as the perturbed
double-scroll model.

2. State estimation

The UKF with the identified model �15� was used to es-
timate the full state vector of the electronic circuit using only
the x component to drive the filter. The following situations
were tested: �i� using �15� as obtained from the modeling
step; �ii� slightly perturbing the underlined parameter of �15�
in order to approximate the resulting attractor to the original
double scroll attractor; �iii� using �15� but jointly estimating
the three parameters in italic �which correspond to the terms
of each equation with higher ERR index; see Sec. III C�; �iv�
the same as in �i� but using a null process noise covariance
matrix Q.

It is important to declare that in the aforementioned situ-
ations, except in �iv�, Q was taken as a diagonal matrix with
elements equal to the one-step-ahead prediction error vari-
ance of the respective model.9This is analogous to what was
done in the example of the Lorenz system. In case �iii�,
where three parameters were also estimated, the elements of
Q� were taken as the corresponding parameter variances ob-
tained as a byproduct from the extended least squares esti-
mator used during modeling step. The results are summa-
rized in Table II.

The very low values of rms for the estimation errors of
the x component are a consequence of low measurement
noise in our experimental setup and due to the fact that the x
variable is used to drive the filter.

An interesting remark that can be made based on the re-
sults of Table II is that although the perturbed model is, in a
sense, closer to the original system �for instance, both have a
positive Lyapunov exponent�, the unperturbed model—

8Other parameter values were tested for perturbing model �15� in
order to obtain the double-scroll attractor. Nevertheless, the greater
the disturbance �i.e., the farther from the optimal set of parameters�
the worse the performance of the UKF in estimating the states,
although the model might display improved global features.

9Obtained by one-step-ahead simulation using each model.

FIG. 6. Attractors produced by identified model �a� without and
�b� with parameter perturbation, with initial conditions x�0�=3.2,
y�0�=0.37 and −0.009.

TABLE II. Normalized root mean square �rms� error of esti-
mated states for the electronic system. The UKF was implemented
with the identified model �15�—in several contexts �see text�—and
with the neural models MLPs2 and MLPs7.

Situation investigated x y z

�i� Model 2.80�10−7% 2.58% 0.87%

�ii� Perturbed model 3.75�10−7% 5.85% 2.86%

�iii� Joint parameter estimation 3.70�10−7% 3.03% 1.24%

�iv� Model with Q=0 88.46% 85.46% 76.46%

�v� MLPs2 2.57�10−7% 2.06% 1.18%

�vi� MLPs7 9.33�10−7% 1.27% 0.86%
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which has a lower one-step-ahead prediction error—is better
suited for the UKF.

When the UKF was implemented using �15� then, quite
naturally, the UKF estimates also settled to the same attractor
�possibly just a limit cycle� shown in Fig. 6�a�. This explains
the very high values of rms for situation �iv� shown in Table
II. This problem can be circumvented by setting a lower
bound for the covariance matrix P by properly setting the
process noise covariance matrix Q. Otherwise, when conver-
gence was achieved, the trace of matrix P would tend to
zero. In so doing the filter remains more active and the most
recent measurements gain more weight compared to the
model and as a result the UKF settles to a double-scroll
attractor �see Fig. 7�a��. In other words, there are two impor-
tant sources of information in the filter: on the one hand,
there is the model that propagates the sigma points and, on
the other hand, there are the measurements. Suitably defining
Q and R is a way of weighting differently these two sources.
So as to express lack of confidence in the model, the trace of
Q should be increased. Similarly, the trace of R ought to be

directly related to the degree of uncertainty in the measure-
ments.

When parameters are estimated in addition to the states,
the estimated parameters converge to the values obtained
during the modeling stage as indicated in Fig. 8. Conse-
quently situations �i� and �iii� have close performance indices
in Table II.

Table III summarizes the UKF performance when extra
white Gaussian noise is added to the x component in the case
of polynomial and neural models. As can be seen, the UKF
implemented with the neural model with seven hidden nodes
is significantly more robust to noise than the filters imple-
mented with the other models. At first sight this could seem
inconsistent with the results shown in Table II where MLPs7
has the highest error for the x variable. It should be noticed
however that this weakness of MLPs7 does not appear in
Table III because the filters are driven by the x variable, that
is, poor performance in predicting the driving signal is not as
serious as poor performance in predicting the remainder of
the state vector, in which case the predictions are all we
have.

V. DISCUSSION AND CONCLUSIONS

This paper has addressed state estimation for nonlinear
systems. Two examples were considered: the Lorenz system
and an electronic oscillator. The former was simulated and
the latter used data actually recorded from the implemented
circuit. These two systems were also studied recently in the
context of UKF state and joint parameter estimation �5,6�.

The procedure followed in this paper is innovative in two
ways. First, the UKF was implemented using discrete mod-
els. Consequently no numerical integration is required in the
propagation stage of the filter. Second, the used models were
built from data only. Therefore, in each example the starting
point was simply and only three time series
�x�k� ,y�k� ,z�k�	1

1000. For the Lorenz example, such data were
contaminated with 10% noise both additive and multiplica-
tive. In the case of the actual oscillator, such data were mea-
sured and digitalized using a 12-bit analog-to-digital con-
verter. In both examples considered in this paper, in the state
estimation stage, only one variable �x�k�� was used to drive
the filter. Therefore the situation investigated in this paper
corresponds to a context in which only a short test is needed
to measure the complete state vector. From the data collected
during such a test the model is built and from then on only
one variable needs to be recorded in order to estimate the
complete state vector. This also explains why noise levels
different from the modeling data were investigated in the
problem of state estimation.

As mentioned before, the corresponding filters were
driven by the x�k� component only. Attempts were made us-
ing components y�k� and z�k� to drive the filter. In the case of
the Lorenz system, driving the filter with y is also fine. How-
ever, due to symmetry, driving the system with z yields esti-
mates of x and y that can turn out to be the opposite of the
actual variables. This is also true when the filter is driven by
the y variable for the electronic oscillator. This is due to the
fact that observing such systems from such variables results

FIG. 7. The estimated double-scroll attractor of the implemented
electronic oscillator. Estimation was performed by the UKF with
model �15� and the x component driving the filter. �a� Full state
vector; �b� detail of the z component �-·-� measured data, and �—�
estimated component ẑ�k�. In the plot �a� the transient at the begin-
ning was also included to give an idea of how quickly the filter
settles.
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in the superposition of fixed points �25�. Namely, from the z
variable it is only possible to distinguish two fixed points of
the Lorenz system and observing the double-scroll attractor
from the y variable only one fixed point can be distinguished.
Finally, driving the filter with the z variable, in the case of
the electronic oscillator, no convergence was attained. The
specific reasons for this remain somewhat unclear.

For the electronic oscillator not only state estimation but
also joint state and parameter estimation were performed. It
was noticed that the parameter values estimated by the filter
were very close to those estimated by the extended least
squares estimator, thus confirming a fact known from theory.
Therefore, in both cases, the obtained parameters led to limit
cycle attractors.

Although the model quality does have a direct bearing on
the filter performance, it was noticed that setting a proper

process noise covariance matrix Q was very important. For
instance, when a model that settled to a limit cycle rather
than to a chaotic was used in the filter, the filter too con-
verged to a limit cycle, even when the driving signal was
chaotic, if an unsuitable process noise covariance matrix was
used. In fact, underestimating the trace of Q indicates to the
filter that we are greatly confident in the model and conse-
quently the filter settles to the “model-dictated” limit cycle.
On the other hand, if a lower bound is imposed on the cova-
riance matrix P �through setting a proper non-null process
noise covariance matrix�—indicating some lack of confi-
dence in the model—the filter settles to a chaotic attractor
that very closely resembles the original one.

Several attempts were made using poor models and even
linear models. As expected, the filter was unable to correctly
estimate the states. This scenario did not change when rather
high values of the lower bound for the covariance matrix
were used.10 Therefore it becomes clear that it is impractical
to try to compensate for a very poor model by means of the
covariance matrix.11 On the other hand, it was noticed that to
a certain extent uncertainties and imperfections in the model
can be acommodated by the filter by setting a lower bound
for the covariance matrix P �directly or through the previous
definition of Q�. An important point to make is that in a

10An interesting exception to this happened in the case of the
electronic oscillator. In this case, it is known from the theory �24�
that the second and third equations of the circuit are purely linear.
Therefore when the filter was driven by the x variable, a purely
linear model could be used with very good results. In this case,
the rms errors associated with x, y, and z were, respectively,
3.04�10−7%, 4.87%, and 0.81% �compare with Table II�.

11There is an interesting interplay between the two sources of
information, namely, the model and the measured variable�s�. A
decrease in the quality of one source should be somewhat compen-
sated for with an increase in the quality of the other.

FIG. 8. The solid lines �—� show the results
obtained from the joint estimation of the three
parameters in italics in Eq. �15�. The dotted lines
�·� indicate plus and minus one standard deviation
�±
diag�P�	� of the parameters estimated by joint
UKF. The dashed lines �- -� indicate the values
for these parameters estimated by extended least
squares during the modeling step.

TABLE III. Normalized root mean square �rms� error of esti-
mated states for the electronic oscillator. The UKF was imple-
mented with the identified model �15� and with the neural models
MLPs2 and MLPs7. The x component, which drives the filter, was
corrupted with extra additive white Gaussian noise.

Model Noise x�%� y�%� z�%�

Polyn 10% 1.97 3.37 1.42

MLPs2 10% 3.48 5.63 2.55

MLPs7 10% 1.01 2.88 1.37

Polyn 25% 4.35 6.08 3.08

MLPs2 25% 8.20 12.66 5.54

MLPs7 25% 1.57 3.53 1.84

Polyn 50% 17.82 17.93 12.84

MLPs2 50% 25.56 27.20 18.13

MLPs7 50% 2.95 5.09 2.75
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scenario of high noise the filter will naturally place a greater
weight on the model. Therefore a more detailed study on the
requirements on the model and its role in the implementation
of the UKF should be carried out.

The former discussion seems to suggest that it would be
nice to have not only dynamical models for nonlinear sys-
tems but also some measure of uncertainty which could be
used to define a lower bound for the covariance matrix in the
filter. In this paper the process noise covariance matrix was
taken to be a diagonal matrix with elements equal to the
variance of the one-step-ahead prediction errors obtained by
simulation of the model which was used later in the state
estimation stage. Also, regardless of the model, the covari-
ance matrix plays a very critical role in the filter performance
and guidelines to choose initial and limit values for this ma-
trix should be devised.

The use of discrete models built from data in connection
with the unscented Kalman filter to estimate states and pa-
rameters of nonlinear systems is viable. The paper consid-
ered the case in which the full state vector was available to
build the model but only one variable was measured to drive
the filter. Uncertainties and imperfections in the model can
be compensated for, to some extent, by setting a suitable
non-null process noise covariance matrix. Poor models usu-
ally result in poor filter performance or even in lack of con-
vergence, regardles of the covariance matrix lower bound.
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